
ENTERPRISE SOFTWARE
DEVELOPMENT SERIES

Priming Kanban 3Priming Kanban2

Biography: Jesper Boeg

Jesper has worked as an Agile and Lean coach
since early 2006, and he is now VP of the depart-
ment for ”Agile Excellence” at Trifork. He has a
Master’s degree from Aalborg University in the
area of Information Systems and wrote his thesis
on how to successfully manage distributed soft-
ware teams.

Jesper helps teams and organizations adopt Agile
and Lean principles, with a strong focus on un-
derstanding “why”. He has a reputation for being
honest and straightforward, with a firm belief that
change management is much more about people
than process.

Jesper believes that trust is best established
through an unrelenting focus on transparency in
the entire organization. He has a strong passion
for Lean Product Development and continuously
emphasises that one must look at the entire soft-
ware delivery system in order to guide success.

Context Based Strategically Aligned Agility are
keywords in Jesper’s work. It is his experience that
in order to create lasting change, organizations
cannot rely on Best Practice rule sets, but rather
must put effort into understanding “why” as well
as aligning Agile principles with the overall busi-
ness strategy. Otherwise, they will quickly revert
to former practices when faced with difficulty and
will restrict themselves from great improvement
opportunities.

Jesper regularly speaks at Agile and Lean confer-
ences. He is a member of the GOTO Aarhus Pro-
gram Advisory Board and has served as a track-
host on numerous GOTO and QCon conferences.

A 10 step guide to optimizing flow in your software delivery system
PRIMING KANBAN

JESPER BOEG

Priming Kanban 5Priming Kanban4

Written by Jesper Boeg
Foreword by James Sutton
Designed by Cecilie Marie Skov
Graphics by Cecilie Marie Skov and Jesper Boeg

First edition October 2011, Second edition February 2012
2. printing
Printed in Denmark at Chronografisk A/S

Trifork A/S
Aarhus: Margrethepladsen 4, DK-8000 Aarhus C
Copenhagen: Spotorno Alle 4, DK-2630 Taastrup
Phone: +45 8732 8787
E-mail: info@trifork.com

Thanks to everybody that helped review this mini-book.
The readability and the content have been greatly im-
proved as a result of your comments. I would like to give
a special thanks to Yuval Yeret, Karl Scotland and James
Sutton for your insightful comments as well as taking
the time to review the book in such detail.

Priming Kanban 7Priming Kanban6

Foreword, James Sutton...

Introduction...

Background...

When should I consider working with Kanban?..

What is Kanban?..

How do we get started with Kanban?..

Where can Kanban be used?...

Kanban Myths...

Step 1: Visualize your workflow..

Understanding your software delivery system..

Visualizing your system...

Step 2: Limit Work in Progress (WIP)..

Understanding WIP..

Visualizing WIP Limits...

Finding the right WIP limits...

Step 3: Set Up Quality Assurance Policies and Make Them Explicit.................................

Understanding quality..

Visualizing policies..

Step 4: Adjust Cadences...

Understanding Cadence..

Finding the right cadences...

Step 5: Measure Flow...

Understanding Metrics...

What to measure?...

Cumulative flow diagrams (CFD)...

Reading the CFD...

Cycle time...

Defect rate...

Blocked Items...

8

10

11

12

13

16

17

17

20

21

22

27

28

28

31

33

34

35

38

39

41

42

43

44

44

45

46

47

49

C o n t e n t s
Step 6: Prioritize..

Cost of Delay (COD)..

Visualizing Priority...

Step 7: Identify Classes of Service..

Types of work...

Define Classes of Service..

Visualizing Classes of Service..

Step 8: Manage Flow...

Decision filters...

Optimize flow not utilization..

Relieve bottlenecks..

Introduce buffers..

Release planning..

Experiment...

Step 9: Establish Service Level Agreements (SLA)..

Establishing the right Service Level Agreements...

Step 10: Focus on Continuous Improvement..

Good luck on your journey...

54

55

56

58

59

60

61

65

66

67

69

70

70

72

74

75

78

81

Priming Kanban 9Priming Kanban8

F o r e w o r d b y J a m e s S u t t o n
Kanban is an industrial technique for “pulling” work through its entire life-
cycle, causing the work to flow more smoothly and at a higher rate. Kanban
also shines a light on the activities that are normally hidden. This visibility is
at two levels; for individual activities, and also over the lifecycle as a whole.

For many decades factory production has enjoyed the benefits of kanban:
higher productivity, better quality, and more-satisfied workers who enjoyed
increased insights into and control over their work. Until recently, howe-
ver, nobody had figured out how the ideas of kanban might translate into a
knowledge work field like software development. It wasn’t even clear if it
would help in such fields.

In the 2000s, David Anderson worked out the Rosetta Stone for such a
translation, and developed the ideas of Kanban into an approach well-suited
for software development. His 2010 book “Kanban” painted the picture at,
say, VGA-resolution. It set an entire industry experimenting with the Kanban
approach in many different product types and situations. They found that
Kanban works with any development lifecycle, from Scrum to Waterfall. It
complements rather than competes with them.

Anderson’s book left two things still wanting, however: An additional level of
detail in the theory and practice of knowledge-work Kanban, and a “starter’s
guide” for people about to take plunge.

The additional needed level of detail is in an upcoming book by David Ander-
son. You could say that it will be at HD-resolution for display on a big screen
TV (I’ve talked to David some about the book).

The other piece of the puzzle, the “starter’s guide,” is what you are about
to read: Jesper Boeg’s mini-book “Priming Kanban.” Call it an iPhone video-
podcast with which to follow along wherever you do your own work. A great
complement to the big HD picture.

When I recently received a draft of Jesper’s book for review, I didn’t think
it possible for such a small book to contain both a concise overview and a
practical, step-by-step worker’s introduction. As I read along, though, I reali-

zed that Jesper had succeeded at both.
He has a unique gift for getting to the core of a matter, and then helping
others get to the core of it for themselves.

I heartily recommend “Priming Kanban” as a practitioner’s quick-start intro-
duction to using Kanban. It will enable you to try out Kanban more quickly
and painlessly…and defuse your anxiety about doing so. On a broader scale,
as it inspires many people to take the same plunge, our industry will expand
the use of this newest tool in our toolkit, Kanban…with all the benefits it
brings.

And that’s good for all of us.

CEO, The Jubata Group
President, Lean Software & Systems Consortium
Shingo Prize, 2007
INCOSE ESEP

James Sutton	

Introduction | Priming Kanban 11Priming Kanban10

I n t r o d u c t i o n

Background
Before we dive into the step-by-step guide to implementing Kanban, let
us spend a few minutes introducing the concept so that you will be able to
recognise where each step fits into the overall Kanban change management
framework. The scope of this mini book is not to describe Kanban concepts
in depth; for that, I refer to David J. Anderson’s excellent book Kanban, which
I strongly recommend reading:

http://www.amazon.com/Kanban-Successful-Evolutionary-Technology-Busi-
ness/dp/0984521402/ref=sr_1_1?ie=UTF8&qid=1313588404&sr=8-1

Instead, I hope to give a short introduction, followed by step-by-step advice
on how to get started.

Kanban, or more precisely “Kanban system for software development”,
represents a more direct implementation of Lean Product Development
principles in software development, compared to traditional Agile methods.
With a consistent focus on flow and context, Kanban offers a less prescrip-
tive approach to Agile and has become a popular extension to traditional
methods, like Scrum and XP.

The word “Kanban” is Japanese and means “Visual Card”. The reason that
Google returns more than 5 million results on a search for Kanban is, howe-
ver, that it also used to describe the system that has been used at Toyota for
decades to visually control and balance the production line and which has
become almost synonymous with the implementation of Lean principles.
Therefore, while kanban systems are a relatively new concept in IT, it has
been used for more than 50 years in Lean production systems at Toyota.

The use of Kanban in software was pioneered by David Anderson, who, in
close collaboration with Don Reinertsen, has strived to expand the know-
ledge of Lean and the use of Kanban to visualize and optimize the workflow
in IT development, maintenance and operations.

Introduction | Priming Kanban 13 Priming Kanban | Introduction12

When should I consider working with
Kanban?
If the answer is yes to one or more of the following questions, there is a
good chance you will benefit from reading the rest of this book:

• Have you been struggling with implementing Agile in your organiza
 tion for a while without much success?

• Have you been using Agile for a while and performance improve
 ments have started to level off?

• Are you using valuable time on Agile practices, which no longer
 seems to fit the context you are working in?

• Have you been using Agile as a checklist without fully understading
 the underlying principles?

• Do you have a need for more flexibility than frozen, committed and
 planned iterations have to offer?

• Do your priorities shift on a daily basis?

• Are you using processes designed for Agile product development
 in a context where they are not an easy fit, e.g. maintenance and
 operations?

• Do you need a gradual transition from waterfall type execution to
 Agile in order to avoid high levels of organizational resistance?

Despite whether your goal is to work in a strict Scrum context, if you are
using waterfall or are trying to find a way to super optimize your current
Agile implementation, most will benefit from the deeper understanding of
Lean, which Kanban has proven to be an excellent catalyst for.

What is Kanban?
There are a variety of approaches to Kanban, but most agree that Kanban is
a change management method that focuses on the following principles:

• Visualize Work
 - Visualize every step in your value chain from vague
 concept to releasable software.

• Limit Work-In-Progress (WIP)
 - Set explicit limits on the amount of work allowed in each
 stage.

• Make Policies Explicit
 - Make the policies you are acting according to explicit.

• Measure and Manage Flow
 - Measure and Manage Flow to make informed decisions
 and visualise consequence

• Identify Improvement Opportunities
 - Create a Kaizen culture where continuous improvement is
 everyone’s job.

With the underlying philosophy that you should:

•	 Start	with	what	you	do	now
•	 Agree	to	pursue	incremental,	evolutionary	change
•	 Respect	the	current	process,	roles,	responsibilities	&	titles

Those of you familiar with Lean will recognize many of these principles as
being the foundation for a Lean pull system and the building of a continuous
improvement (Kaizen) culture. What Kanban first and foremost does is serve
as a catalyst to introduce Lean ideas into software delivery systems. This is
also stated in David’s book:

Introduction | Priming Kanban 15 Priming Kanban | Introduction14

 ”...Kanban (capital K) is the evolutionary change method that utilizes
a kanban (small k) pull system, visualization, and other tools to catalyze
the introduction of Lean ideas into technology development and IT operati-
ons”
 David J. Anderson, Kanban 2010

We will show a lot of examples of Kanban boards in the following chapters
and will explain the mechanics. To give you an idea of the concept, figure 1
shows an example.

As you can see, all work is made visible. WIP limits are in place (written in
each column header). Policies are made explicit and flow is measured. As you
will notice, the last column does not have a WIP limit assigned. This is due
to the fact that this particular team has opted for a regular weekly release
cadence (3pm Tuesday), which means that all finished work is released at
this time.

Kanban is all about driving evolutionary change and these simple steps have
proven extremely helpful in doing that. The reason we refer to such a system
as a “Kanban Pull System” is that visualized flow and WIP limits ensure that
you can never introduce more work into the system than it has capacity to
handle. There is only a certain number of work permits (kanbans) available,
so you must complete existing work before new work can be started. This
results in functionality being pulled through the system, based on capacity
rather than pushed based on forecasts or demand.

There are no rules in terms of how your board should look. The only limitati-
on is your imagination, creativity and the constraints of an electronic system
or wall space. Since this is a starter’s guide, we will, however, use pretty
basic board examples to demonstrate the principles.

Fig. 1 Kanban Principles in Action

Introduction | Priming Kanban 17 Priming Kanban | Introduction16

How do we get started with Kanban?
Hopefully, the 10 steps in this book will get you well on your way, but before
we get that far, it is important to understand that Kanban has a different ap-
proach to change management than most other Agile methods.

Kanban is built on the concept of evolutionary change. Start by understan-
ding how your current software delivery system works. When you have
managed to visualize, measure and manage your flow, improve it one step at
a time by relieving the largest bottleneck. This is quite different compared
to e.g. Scrum, where you will often start out by redefining roles, process and
artefacts. This makes Kanban ideally fitted for use on top of existing proces-
ses, which can be anything from Scrum to Waterfall and perfect in situati-
ons where organizational structures inhibit radical change. Remember the
foundational principle:

“Respect the current process, roles, responsibilities & titles”

In Lean terms, this means that Kanban is primarily built on the concept of
Kaizen (continuous improvement), and Kaikaku (dramatic change) is only
used in special situations where structural change is needed or where seri-
ous performance leverage needs to be identified.

Fig. 2 Kanban Takes an Evolutionary Approach to Process Optimization

Where can Kanban be used?
Now we are almost ready to get started. However, before we dive into the
implementation details, let us just quickly bust some of the myths about
Kanban to make sure that the following sections are read with the right
mindset in place.

At Trifork, we have helped a lot of companies and teams increase their ef-
fectiveness by adopting Kanban. At first, it seemed that the primary target
groups were teams working with maintenance and operation, but Kanban
has proven to be just as helpful for software development. Moreover, teams
and organizations working with waterfall-like methods have found the evolu-
tionary approach to be extraordinarily helpful in a gradual transition to Agile
product development.

Kanban Myths
• Myth: : Kanban is only suitable for teams working with small
 uniform tasks, like those seen in operation and maintenance.
• Fact: Kanban is heavily inspired by Don Reinertsen’s work with
 Lean Product Development and has proven to be as good a fit to
 software development as it has been for operation and
 maintenance.

• Myth: Kanban and Scrum are opposites.
• Fact: None of the principles in Kanban restrict you from doing
 Scrum. Kanban acts as a change agent and the principles in Scrum
 should therefore only be used in cases where they help to
 optimize flow. Nothing is keeping you from starting with Scrum and
 using Kanban to drive further change – many projects have been
 incredibly successful with this strategy. Some might even argue
 that it was the original intention with Scrum as well; however, it
 somehow got lost in the focus on ceremonies, roles and artifacts.

• Myth: By not insisting on planned committed iterations, Kanban
 falls prey to Parkinson’s Law that “Work expands so as to fill the
 time available for its completion”.
• Fact: Though being a valid concern, Kanban projects rarely
 display this behaviour, since fixed cadences, extreme visualization,

Introduction | Priming Kanban 19 Priming Kanban | Introduction18

 cycle time measurement and tighter feedback loops with business
 keep focus tight and work items flowing.

• Myth: Kanban teams do not use timeboxes.
• Fact: Timeboxes are not mandatory, but should be used when they
 help optimize flow, feedback and quality. Most Kanban teams use
 fixed but decoupled cadences of planning, review and releases,
 and thereby dispense with the traditional iteration model, while
 keeping the value intact.

• Myth: Kanban teams do not estimate.
• Fact: Estimates are not mandatory, but should be used when
 appropriate. Most Kanban development projects use some degree
 of initial sizing to ensure optimal portfolio management, prioritiza-
 tion and alignment, or use estimates for work that is more sensitive
 to cost/benefit analysis or due date performance.

• Myth:Kanban is better than Scrum/XP/Crystal/FDD….
• Fact: Kanban is first and foremost a catalyst for driving change and
 therefore needs a starting point.

Therefore, while most projects will benefit from using Kanban, it is not a sub-
stitute for e.g. Scrum. Scrum is in most cases a perfect starting point when
adopting Kanban.

Though the Kanban community is constantly fighting these and other myths,
Kanban still remains one of the most misunderstood concepts in the Agile
community to this date for two main reasons:

A lot of the noise and confusion revolves around the fact that Kanban is a
change method and therefore has very few descriptive parts telling you
how to work, which roles to fill, etc. Since the concept of a change method
is poorly understood, people have tried to compare it to more prescriptive
methods, such as Scrum and XP.

Local examples and emergent behaviours of Kanban, in real world projects,
have come to represent a “Kanban method” to some people. It is easy
to see why people misunderstand, since many Kanban projects show the
same emergent practices. Reality, however, is that Kanban is about using

Lean principles to optimize existing processes in an evolutionary way, and
therefore cannot and should not be compared to Scrum, XP, Crystal, FDD or
whatever method you are using.

The second reason is arguably that the word “Kanban” might carry too much
baggage from its origins in Lean production systems to be an adequate word
to describe a change method for software development and IT operations.
Though kanban pull systems, as they are used in production systems, do
drive change, Kanban in software builds on a much broader set of Lean
principles, and that creates a difficult mental gap for those having worked
extensively with Lean in the past. You will find that a lot of the strong reacti-
ons against Kanban, from parts of the Agile community, actually build on this
misunderstanding.

The good news is that most projects, Agile or non-Agile, can benefit hugely
from using the principles of Kanban to drive change and continuous improve-
ment, which I hope to demonstrate in this book.

The observant reader might have noticed that the title of this book is not
exactly in line with the Kanban principles. As David Anderson wrote in a
tweet on June 30, 2011 “… Kanban system design is a thinking process, not a
copying or template implementing process”. However, those familiar with
the “Dreyfus Model of Skill Acquisition” will recognize that whenever
acquiring a new skill, you need prescriptions at first; my hope is that this
“primer” will help you transition quicker and more painlessly. The impor-
tant thing is to know that prescriptions only serve as a way for you to gain
knowledge to move forward and not as an endpoint or a checklist to be fol-
lowed blindly. The templates and practices suggested in the 10 steps in this
book are emergent behaviours experienced in Kanban projects, and not the
Kanban change method itself.

Now that we have got the general picture, let’s go on to how we can apply
these things in practice. Each step consists of a short explanation on “why”
followed by “how”.

Step 1: Visualize your workflow | Priming Kanban 21Priming Kanban20

S t e p 1
V i s u a l i z e yo u r

w o r k f l o w

The first step towards visualizing your workflow is to understand how your
current system works.

Understanding your software delivery
system
To be able to make informed decisions about how to best optimize your
workflow, the first step is to understand what you are doing. The important
thing here is to resist the temptation to change anything. Just find out how
you are working without idealizing it. The key is to try to map your entire
software delivery workflow and not just focus on the “development” part.

There are a number of different ways to do this. The most popular way is
to use the Lean concept of Value Stream Maps (VSM). Recently, VSMs have
taken quite a beating from Agile and other knowledge work communities -
the main argument being that knowledge work is not a linear process, like
the ones seen in production systems. This has led to the evolvement of
techniques, like Knowledge Creation Networks, which are better suited to
handle non-linear work. For this simple example, we will, however, use the
more simple VSM technique, which I still find extraordinarily helpful. Howe-
ver, you should explore the option that fits your context.

In its simplest form, a Value Stream Map is a visualization of the stages that
our work passes through, from raw material to finished product, or in the
case of software, from vague idea to a feature working in production. The
key thing when doing this for knowledge work is to think of each stage as the
primary form of information arrival. For example, a stage called “Test” inclu-
des more work than just testing (fixing, analyzing, refactoring, discussions,
updating, accept criteria, etc.), but since the primary form of information
arrival is “Test”, we will define our work as being in the “Test” stage, while
all these activities are going on. The space between our stages, where no
information is being added, is defined as the “wait time”. Figure 3 shows an
example from a real project.

Step 1: Visualize your workflow | Priming Kanban 23Priming Kanban | Step 1: Visualize your workflow22

We might later decide that implementation actually consists of: User story
breakdown, Development and Code Review, but let’s stick with this simple
version for now. Already, improvement ideas spring into our mind: Why is
there an average wait time of 5 months from specification to implementati-
on? Why are we waiting 2 weeks before testing? Resist the temptation to fix
these issues right now, there will be plenty of time for that later; right now,
our focus is on understanding how our current system works.

Initially, it is a good idea to limit the number of stages in the value stream
map and Kanban board. With too many stages in place, you quickly lose sight
of the big picture and just focus on the mechanics. Later on, you might find it
beneficial to add more details, but keep it simple for now.

Visualizing your system
Now that we have gained a better understanding of our software delivery
system, the next step is to try to visualize it. We can do this in an electronic
system or by simply using a whiteboard. Unless you are working in a distri-
buted team, it is usually a good idea to start out with just the whiteboard;
nothing makes your work more visible than having it right in front of you all
the time and being able to physically touch it. As team maturity increases
and you find the need to collect more data, you might want to move to an
electronic version, but stick to the whiteboard for now.

Often, you will end up with at least two types of stages: “Activity” stages,
where active work is being performed, and “Buffer” stages, where work is
waiting to be released/developed, etc., but more on that later.

Fig. 3 Value Stream Map Example

Fig. 4 Activity Stage vs. Buffer Stage

Step 1: Visualize your workflow | Priming Kanban 25Priming Kanban | Step 1: Visualize your workflow24

The first version of your board might look something like the one shown in
figure 4 (Notice that all the work necessary to complete a given feature is
represented, not just development).

Every feature starts out as a vague idea in the PO Inbox and ends up in the
“Releasing” column, where it is removed from when the feature is actually
working in production. Notice that we haven’t changed anything - you might
still be following a strict Scrum implementation.

If visualizing your work proves a difficult task, now is the place to stop.
Don’t go any further before you have managed to visualize all the work you
do. If information is hidden and some tasks are completed outside of your
workflow system, there is little chance that you will ever be able to make
informed decisions about how best to optimize. A general rule is that “you
can only manage the work you can see”. Visualizing work may sound decep-
tively simple, but it can prove difficult in real life. Reasons may be varied:
People know they are doing things they shouldn’t. They are afraid they will
be punished if their superiors know how things really work. Though stressed
out, they feel they will let their colleagues down if they are not constantly
fire fighting. You need to fix these problems and make everybody involved
understand that no one will be blamed or discredited for displaying the cur-
rent status, before moving on.

Visualizing your workflow gives a number of benefits - the most important
being:

Focus on “The Whole”
• It becomes visible exactly how your work affects others, and
 vice versa.

Transparency
• Everybody knows exactly what is going on and no information is
 hidden.

Identifying waste
• You naturally start to question why you are doing things the way
 you are (more on that later)

In general, we want work to flow from left to right on our board, since when
things start moving backwards, our system becomes much more compli-
cated to master. To do this, we need to accept that each stage on the Kanban
board represents the primary activity and that e.g. “test” also includes some
amount of analysis, coding, review and documentation. In special cases whe-
re “test” reveals an issue that will take 100 hours to fix, you should consider
starting from scratch, since the premises have changed dramatically.

Do not restrict your board design to what you have seen others use or to
the examples in this book. It seems that every time I help kick-start a team,
I see new creative examples and good ideas on how to best visualize flow.
The careful reader might even have noticed that the more advanced concept
of expanding and collapsing work items sneaked in to the very first board
example in this book (figure 1). This is a great example of how teams have
found ways to map the behaviour of a user story, expanding into a series of
tasks (purple tickets) that move across the three stages of development in-
dividually before collapsing again when all tickets have been completed and
the user story is reviewed as a whole. It is a simple concept, but is extremely
powerful in displaying what is going on.

Step 2: Limit Work in Progress (WIP) | Priming Kanban 27Priming Kanban26

Step 2
Limit Work in

Progress (WIP)

When you have managed to visualize your workflow, you are ready to
proceed to the next step - limiting WIP. Though it might be tempting to do
this immediately, visualizing work is often not as easy as it seems and it is
therefore often a good idea to spend some time exploring this aspect before
continuing on.

Understanding WIP
To understand why limiting WIP makes sense, we need to take a look at
Little’s law, which states that (adapted to product development
terminology): Cycle time = WIP / Throughput per unit of time

Cycle Time describes the time it takes for a work item to pass through our
system or, in other words, “the time it takes from when a feature is se-
lected for implementation until it is working in production”. How you define
“selected for implementation” depends on your context. For some, it is the
placement of an item on the backlog and for others; it might be the time an
item is selected for detailed specification. You might also want to distinguish
between the two and refer to the time an item arrives until it is delivered as
“Lead Time” and the time from when it is selected for implementation until
it is delivered as “Cycle Time”.

WIP describes the amount of Work In Progress in our system. How many
“story points”/”user stories”/”backlog items” are currently in progress in
our system? Again, it depends on the context. Some include all items on the
backlog in WIP, while others consider only the items selected for implemen-
tation.

Throughput per unit of time is simply the average number of items produced
in a given period of time. In Scrum, this is usually referred to as velocity.

This means that given a system with 100 user stories in progress (WIP) and
a throughput of 2 user stories per week, the average cycle time is 100/2 =
50 weeks or almost a year. Reducing this to 25 weeks can be done by either
doubling throughput to 4 user stories per week or by reducing the number
of user stories in progress to 50. In most cases, it is initially much easier to
reduce WIP than increasing throughput.

Step 2: Limit Work in Progress (WIP) | Priming Kanban 29Priming Kanban | Step 2: Limit Work in Progress (WIP)28

As you might have guessed, limiting WIP is all about reducing the cycle time
to increase flow and to minimise the amount of work we have invested time
and resources in, but has yet to generate any business value. Fast feedback
cycles are also a great way to minimise risk, since decisions are validated
continuously and quality issues are exposed immediately. This is a subject
explored in detail in Capers Jones’ “Cost of Quality” (1980).

So how do we do this? Well actually, all we have to do initially is to make
our best effort to define how many items we will allow in each stage of our
board at any given time. A good idea is to let this exercise be guided by the
policies your team would like to enforce. If the team decides that it is a good
idea that no developer should work on a user story single-handedly, you
might choose a limit of 3 for a team of 6. Note that this is only true for acti-
vity columns, like “development”, “test”, etc. For buffer columns, like “ready
for development”, the general rule is that if it is empty once a year, the WIP
limit is too large (364 days you are working with a larger buffer than needed)
and if it is empty once a day, it is too small. People often joke that the univer-
sal WIP limit is 5, so if in doubt, 5 is probably a good number to start with.

Visualizing WIP Limits
How you visualize your limit is up to you. Figures 5 and 6 show two common
ways of doing it. In figure 5, only one item may be placed in a box and that
gives you a very visual signal of when you have a “permit” to start/pull new
work (the box is empty). In figure 6, it is easier to divide the activity stage
into “in progress” and “done”, since the WIP limit is simply written in each
column header. This can give you additional insight into how your system is
working and this is the common way of doing it in IT. People having worked
with Lean manufacturing might opt for the first version, since it more closely
resembles the visual pull signal of the plastic card.

Fig. 5 WIP Limits Visualized Using Containers

Step 2: Limit Work in Progress (WIP) | Priming Kanban 31Priming Kanban | Step 2: Limit Work in Progress (WIP)30

Fig. 6 WIP Limits Visualized Using Numbers in Column Headers

Finding the right WIP limits
There are many schools of thought, in terms of how tight you should set your
WIP limits initially, and it is out of scope for this mini-book to cover the sub-
ject in detail. One way is to observe your system and set the limits just loose
enough for your current workflow to continue unhindered. Then, identify
your bottleneck and adjust one limit at a time. A more radical approach is to
set your limits on activity columns tighter than you expect your system to be
able to handle and buffer each stage. Then, you observe where work builds
up, and gradually loosen until work flows through the system. Both require
some experience, so do not expect to get it right the first time. There is no
final conclusion as to which one is better, but setting the limits with your
policies in mind seems to work in both circumstances.

In any circumstance, it is important to set an explicit policy of how the
decision to break or change the limit will be made. To maximize learning, it
is a good idea to make such decisions together as a team. This ensures that
everybody gets to voice his or her opinion and understand the decision. This
is not just a matter of flow but also a learning point!

Always remember that your initial limits are just best guesses, given at a
place in time where you had the least amount of information available. As
you gain more information about your system, limits should be adjusted
continuously as you find the more optimal ways of working. If you are still
working with your initial limits as well as the same stages 3 months after you
started, there is a good chance that you have missed the most important
step in this guide, namely the continuous improvement step we will cover in
more detail later. Limits that are too tight will block the flow and will make
people idle for too long or will simply be ignored without serious discussion,
while limits that are too large will increase cycle time and will make work
items idle for too long.

What you will quickly notice is that with WIP limits in place, your system
can only work to capacity. You need to finish work to get a permission to
start a new thing. While sounding trivial, it is the core concept of a Lean pull
scheduling system and an incredible powerful tool on your journey to a more
effective, sustainable and predictable software delivery system. A popular
metaphor is to think of the system as a chain of paper clips.

Priming Kanban 33Priming Kanban | Step 2: Limit Work in Progress (WIP)32

As long as you are pulling it across the table, they follow a nice line, but if
you push it instead, they all crumble together in a mess, each item blocking
the rest (Illustrated in figure 7).

You will also quickly notice a certain pain that happens when you don’t get
permission to start a new thing, while you think that it is “the right thing” to
do. This is a sign that you are discovering an impediment to flow – and the
most important thing is not to be ”Comfortably Numb” about the pain but to
leverage it for improvement.

When discussing WIP, we often focus narrowly on the amount of items in
progress. We should, however, not forget that size is just as important. Large
items will block resources for long periods of time and will create distur-
bance in flow, while smaller items will flow much quicker through the system
and will give us immediate feedback. Breaking items down to the minimal
marketable feature set (MMF) is, however, a difficult task and it requires
imagination as well as skill and experience.

Fig. 7 Pull vs. Push

Step 3
Set Up Quality

Assurance
Policies and Make

Them Explicit

Step 3: Set Up Quality Assurance Policies and Make Them Explicit | Priming Kanban 35Priming Kanban | Step 3: Set Up Quality Assurance Policies and Make Them Explicit34

If you are familiar with Lean, you might have come across the term “Quality
built in”. Why is quality so important, you might ask? Isn’t the main thing
that we fix the bugs that find their way into production? The simple answer
is that quality issues are much more expensive than you think. In Kanban, we
focus on making policies explicit to optimize quality and consistency in our
software delivery system, and we use that as a base for continuous improve-
ment.

Understanding quality
Whether it is a user that cannot complete a task because the system lacks
an intuitive interface or it is a bug that blocks the workflow, they are both
quality problems and they both stress our system and generate a whole loop
of waste. This is better known as “failure demand” in Lean systems and de-
scribes all activities and additional work related to the product not being de-
signed properly in the first place. Sometimes it is acceptable, since releasing
the software to get real feedback was the cheapest way to buy information.
It might also be the case that finding this bug up front would have cost us a
lot more time and money than fixing it afterwards. In the majority of cases,
however, it is simply caused by an immature process.

So why is it so expensive? Let’s look at a couple of common scenarios in
software development:

A user (let’s call him John) cannot complete his task because of a bug in our
system. John writes a bug report or calls first level support to address the
problem. John, however, knows little about what it takes for a developer to
be able to investigate the issue or maybe the first level supporter does not
know the system as well as he should. In both cases, wrong or inadequate in-
formation is given to the developer who ends up solving a different problem
(which might not actually be a problem, but instead leads to another bug) or
simply gives up. This continues until finally, the bug is solved. However, not
only did John not complete his task, faulty information was actually saved to
the database, which now needs a complicated SQL script to be reverted to a
meaningful state. It is not uncommon for situations like this to occur as well
as a factor of 100-1000 time and resources spent, compared to having spent
the time not introducing the bug in the first place.

Moreover, quality problems cause us to task-switch and fire fight. We
naturally set aside the work we are currently doing to fix a serious bug or
usability problems in production, when after half a day the problem is finally
fixed we cannot remember the complicated problem we were working on
and have to spend an extra half an hour getting back into the context.

For these reasons, Lean puts a huge emphasis on fail proofing the delivery
system (Poka Yoke). In production systems, Poka Yoke is done by using stan-
dards and checklists that must be followed when completing a task. Even
photocells are used to register whether a specific screwdriver is used the
correct number of times or all parts needed have been removed from the
stack. This might sound like an inhumane environment to work in, but ac-
tually workers in Lean production systems do not see themselves as robots
blindly following standards and checklists. They see themselves as expert
operators that are constantly trying to improve the system they are work-
ing in by coming up with new ideas as to how it can be improved. In “The
Elegant Solution: Toyota’s Formula for Mastering Innovation, 2006” Matthew
E. May refers to this fact as the main reason Toyota still manages to IMPLE-
MENT one million new improvements every year.

Visualizing policies
So how does this translate to software development? Well actually, you are
half way there. You have already visualized your work on the board and have
put WIP limits in place. All you need to do now is add the policies you are
already using to ensure quality and consistency. Doing this, your board might
end up looking like the one shown in figure 8.

Note that entire stages may be QA policies and that policies also serve to
ensure consistency and quality in the process itself (e.g. tracking cycle time
and defect rate). All of it traces back to the third Kanban principle “making
policies explicit”.

Step 3: Set Up Quality Assurance Policies and Make Them Explicit | Priming Kanban 37Priming Kanban | Step 3: Set Up Quality Assurance Policies and Make Them Explicit36

Fig. 8 Explicit Policies Visualized on Board

Many teams have taken fail proofing to extraordinary levels in recent years
and have implemented systems that were unthinkable just a few years ago.
The “Lean Startup Movement” has shown that it is possible to deploy soft-
ware to production several times a day without down time or high defect
rates. This can only work because they have put unit, integration, regres-
sion and performance tests in place that help validate the code as well as
Key Performance Indicators that signal an alarm, whenever the system is
not behaving as expected, and which automatically roll back to the previous
versions. This makes it impossible to introduce whole classes of errors.

Always keep in mind that you should never feel that you are slaves to your
policies and checklists. You are an expert knowledge worker constantly
observing and trying to improve the system you are working in, not a robot.
Start by adding the procedures you are using at the present time and add/
remove/change them when you discover new and better ways of ensuring
quality. Every bug is a chance to reflect on how it managed to get into your
system.

Initially, the thought of reflecting and learning from each and every bug will
seem daunting. With time, as quality improves, it will, however, become
more and more natural. This is a price worth paying and is referred to as
”Zero Tolerance” in Agile Testing circles. Often, people mistakenly interpret
this as “we are now allowed to spend all the time we like fail-proofing the sy-
stem and all that counts is that we have zero defects”. “Zero Tolerance” does
not mean that we do not expect bugs to occur ever again but to consciously
reflect over each bug and strive for perfection.

When implementing Kanban, it is essential that everybody commits to adhe-
ring to the agreed policies (initially they just describe your current process)
and that it takes a team decision to change them. When individuals decide to
break policies on their own, without involving the team, the process quickly
starts to degenerate and suddenly only ½ of the items are actually visible on
the board and results are low quality and inconsistent. Remember, when you
want to break a policy, it is often for good reasons and that is the perfect
starting point to initiate a needed discussion. “Change them; do not break
them” is a phrase I always repeat several times when doing Kanban training.

Priming Kanban | Step 4: Adjust Cadences 39Priming Kanban38

Step 4
Adjust Cadences

Once you have managed to visualize your flow, limit WIP and establish QA
policies, one of the first things you should evaluate are your cadences. In a
typical software delivery system, a number of activities benefit from regular
cadences and finding the right one for each type is paramount to increasing
flow. Note that in a Kanban system, we are not obligated to synchronise eve-
rything to the lowest common denominator. We can adjust the cadence of
each activity to its own optimal level. Typical cadences we need to consider
are planning (input) cadences and delivery (output) cadences. A lot of other
cadences, like a review/retrospective cadence, a quality assurance cadence
(if you are not a true Agile project) and regular stand-up meeting, of course,
also exist; however, let us stick to planning and delivery for now.

Understanding Cadence
Finding the right delivery cadence is one of the most important things in
Lean Product Development (LPD), since it helps you optimize essential feed-
back loops, reduce risk and optimize your delivery process. Fast feedback is
the very core of Agile and Lean product development and when coaching
teams, I continuously stress that work, which has yet to generate value,
should be regarded as a hypothesis we need to test as quickly as possible. In
his book “The Lean Startup, 2011”, Eric Ries takes this one step further and
uses the concept of validated learning to measure progress. This is an intere-
sting idea that I would suggest you take a closer look at, but which unfortu-
nately is out of scope for this book to cover.

Though releasing every feature directly to production is the most optimal
solution (given that you have a system optimized to handle this), in reality,
most projects work with two delivery cadences.

• One cadence where code is deployed to a preproduction system to
 obtain initial feedback (internal release cadence)

• One cadence where the new version is deployed to the actual
 production environment (external release cadence)

Especially on “Greenfield” projects, these two cadences can be very far
apart. It may take 3 months before the system is feature-complete enough

Priming Kanban | Step 4: Adjust Cadences 41Priming Kanban | Step 4: Adjust Cadences40

to hit production while code is being deployed and tested every day on the
preproduction environment.

The important thing when choosing the right internal and external release
cadence is to be aware of the economic cost of your choice. There is always
a transaction cost (the cost of moving your version from one environment
to another) associated with a release and there is always a holding cost as-
sociated with waiting. The balance between these two describes the optimal
cadence, which is visualised in figure 9 from Don Reinertsen’s book on Lean
Product Development Flow (used with permission).

The more features you bundle together in a release, the cheaper the cost per
feature (lower transaction cost), but also a higher holding cost, since each
feature will have to wait longer getting deployed, thus resulting in a loss of
business value, outdated feedback, uninformed decisions and lower user
involvement.

Holding costs are slightly different for external and internal releases. Since
an internal release does not expose any real business value to customers,

Fig. 9 Batch Size Optimization

holding costs represent only outdated feedback, uninformed decisions
and decreased user/business motivation, due to low involvement. Anyone
having worked in a real business context will, however, recognise that these
can be as detrimental as lost revenue.

As you can see from the figure, the “total cost” u-curve has a pretty flat
“bottom”. Therefore, it does not really matter if you hit the optimal release
cadence. Being 10 or 15 percent off will still generate a good result.

Finding the right cadences
The problem is that many projects do not even consider this very carefully.
Many mature Agile teams are able to release to preproduction environments
with the click of a button, but still they wait a full 3 weeks before getting
feedback on a given feature from users. When transaction costs can be mea-
sured in single dollars, you should strongly consider working with very small
batch sizes. Sometimes this is problematic, since users are not available;
however, in most cases, it has simply not been considered.

Another key consideration, which Toyota taught us, is that transaction costs
are not fixed. The continuous deployment movement has shown us that
it is possible to deliver reliable versions to production 50 times a day for
systems handling millions of dollars. This can only be done by having a fully
automated deployment procedure and a whole suite of unit, integration and
regression tests, which is, of course, an investment, but is one that allows
you to work in batch sizes of a few lines of code.

Adjusting the planning cadence should be done with similar considerations.
When the time between planning meetings gets longer, more stuff has to be
planned in one large batch. This results in more design in progress and less
informed decisions, due to a longer cycle time. On the other hand, meeting
everyday might prove too large an overhead and will raise transaction costs.
In some cases, Kanban teams choose to plan on demand instead. This can be
done by sending an email to stakeholders whenever e.g. 3 slots are empty in
the input queue and by arranging a meeting or a conference call to fill them
in with the highest priorities. Usually, “on demand” planning is reserved for
more advanced teams and requires some prior experience handling flow.
Therefore, consider carefully whether this should be your initial strategy.

Step 5: Measure Flow | Priming Kanban 43Priming Kanban42

Step 5
Measure Flow

Measuring progress is unfortunately one of the most misunderstood and
misapplied aspects of software development we come across. Often, me-
trics are used to hold project managers accountable for aspects they had no
control over in the first place or as fixed success criteria, established when
people knew the least about the system to be developed.

Understanding Metrics
When discussing metrics, I find that one ground rule should always be
remembered: “your software delivery system only has a certain capacity”. If
you try to press your system beyond its capacity, it will lead to lower quality,
unsustainable pace, higher maintenance costs, or all of the above. But still,
time and time again, we see project managers almost bragging that they
have made their teams work overtime for 3 months or that by some heroic
effort, they have fixed things at the last moment when everything was total
chaos. Though we should celebrate great achievements, software develop-
ment projects do not need fixers; they need people that are able to deliver
with transparency and a healthy sustainable pace. Everything else is simply
too expensive. I like Kent Beck’s statement that “if you have a problem that
requires more than one week of overtime, you have a problem that should
not be fixed by working overtime anyway”.

You may of course increase your capacity over time by hiring more people
(beware of doing that for short-term results) or by optimizing your process.
Another good ground rule to consider here is that “your system never has
more capacity than it has PROVEN to be able to deliver”. Following this
simple rule will also keep you from managing projects by the anti pattern
of “wishful thinking and other people’s successes”. Starting on a Greenfield
project, your capacity and capability will of course be informed guesses from
previous performance, and the key here is to track progress from the begin-
ning to validate those assumptions. There will be more on that topic in step
8.

So, think of your plan as a tool for alignment, not a success criterion, and
measure your flow to determine whether you are still aligned. What we want
is our software delivery system to be stable and predictable, so that we can
make informed decisions about deadlines, dependencies, staffing, scope and
budget.

Step 5: Measure Flow | Priming Kanban 45Priming Kanban | Step 5: Measure Flow44

What to measure?
So, how do you measure flow? There are dozens of ways to do this and the
main thing to consider is always “will I act on this piece of information”. If
you are not going to change anything based on a chosen metric, chances are
that you shouldn’t be measuring it at all. If you have no idea where to start,
I suggest starting with the following four: Cumulative Flow Diagram, Cycle
Time, Defect Rate and Blocked Items.

Cumulative flow diagrams (CFD)
Cumulative flow diagrams seem to be replacing burn down charts for more
mature Agile teams and organizations for good reasons. They are easy/easier
to update and give you better insight into the system’s status. For those un-
familiar with the concept of CFDs, they simply display the current amount of
work in your system for each stage over time. While this may sound simpli-
stic, it provides you with the same kind of information as the traditional burn
down chart, plus a lot more. Figure 10 shows an example of a CFD.

Fig. 10 Cumulative Flow Diagram Example

Reading the CFD
The gradient of the “done” area describes your velocity over time, while the
space between this line and the “backlog” line may be defined as WIP.

• If the width of a part of the WIP area increases, it could be a sign
 that a bottleneck is occurring.

• If the gradient of the “backlog” area is steeper than the gradient
 of the “done” area, it is a clear sign that you are adding more work
 to your system than your current capacity.

• Projecting where the gradients of “backlog” and “done” cross is
 your current best guess of a final release date.

• Average Cycle Time and Quantity in the queue can also be establis-
 hed from the diagram.

Learning to read a CFD is easy and figure 11 from Don Reinertsen’s book
(used with permission) gives an excellent visual representation. The black
area equals WIP.

Fig. 11 How to Read a Cumulative Flow Diagram

Step 5: Measure Flow | Priming Kanban 47Priming Kanban | Step 5: Measure Flow46

Cycle time
Though your Cumulative Flow Diagram will tell you the average cycle time,
tracking individual cycle times can be very helpful in terms of predictability.

Averages can be misleading and a visual representation will give you detailed
information about the reliability of your system as well as the opportunity to
meet customer demands more accurately (something we will cover in more
detail in step 9).

Tracking the Cycle Time is even easier than updating the CFD. All you have
to do is register the date work started on an item (remember to make this
policy explicit as well). When work has finished, you plot the number of days
it took to complete and your diagram should look something like the one
shown in figure 12. Since each “step” on the x-axis simply represents a com-
pleted work item, teams often choose to leave it without “unit”.

Fig. 12 Cycle Time Diagram Example

Though simple, a cycle time diagram tells you a lot about how your system is
working:

• Do you have a high level of consistency or are the numbers far
 apart?

• Is the trend going in the right direction?

• A chance to investigate outliers (positive and negative).

• The consequence of decisions (large tasks, fire fighting, quality
 issues…).

If 90 percent of work items take under a week, you might want to tell your
customer that they can expect that 9 out of 10 times, work will be complet-
ed within a week.

You should, however, remember that Cycle Time is a lagging indicator. This
means that we will only see problems after they have occurred, where na-
turally it is too late to do anything about it. Therefore, we have to use cycle
time diagrams, together with e.g. a CFD, to be able to act proactively.

Defect rate
As previously mentioned, quality issues are incredibly expensive and you
therefore want to keep them under a watchful eye. Tracking the defect rate
and the total number of bugs in your system is an easy way of making sure
that quality problems do not get out of hand.

Step 5: Measure Flow | Priming Kanban 49Priming Kanban | Step 5: Measure Flow48

Surprisingly, few organizations use defect rates as a KPI (Key Performance
Indicator), despite the fact that it does tell you a lot about the status of your
project:

• Why is the number of new defects increasing? Did you relax some
 QA policies?

• How did the high level of bugs in week 20 affect the cycle time?

• What was the impact on the cumulative flow diagram when the
 number of bugs increased?

As usual, always be careful not to make too many conclusions based on
individual data sets. A bad week might just be a coincidence. Look at trends
to see if you are moving in the right direction. Figure 13 shows an example of
a defect rate diagram.

Keeping the total number of bugs between 0 and 20 is a good policy for most
projects. Once the list gets bigger, it becomes hard to administer and you

Fig. 13 Defect Rate Diagram Example

have to spend time checking for double entries, outdated issues and things
that have already been fixed. People also seem to get nervous and demand
more reports and tracking once the list approaches 50 or 100; before you
know it, there are bug management boards and weekly bug meetings stea-
ling your valuable time. Even cosmetic bugs require attention and take time
to administer, so don’t fall into the trap of allowing 50 of them either. Often
people will try to categorize their way out of trouble, by simply changing the
severity of the bugs they have registered. It is however a very short sighted
solution due to the reasons stated above.

Blocked Items
By now, I hope that you are convinced that flow is important for our systems’
ability to act predictable and for the individual processes to operate effec-
tively. Most people working in both Agile and non-Agile contexts will have
experienced items being blocked for longer or shorter periods of time and
for various reasons. Though this will show up on our CFD and eventually our
Cycle Time diagram (if the item makes it through the system), most teams
find it beneficial to explicitly and visually track the team’s ability to handle
and fix issues blocking one or more features in the system. Some compa-
nies even use this as the leading Key Performance Indicator (KPI), since they
recognize that blocked items have serious long-term effects on the systems
and that a team’s ability to quickly solve issues says a lot about the team’s
performance and effectiveness. Blocked items should always be visible on
the board, and tracking the status over time is usually a good way of kno-
wing whether the team is moving in the right direction. Figure 14 shows an
example of a blocked items diagram.

Step 5: Measure Flow | Priming Kanban 51Priming Kanban | Step 5: Measure Flow50

The standard way of visualizing blocked items on the board is simply to
attach a pink sticker to a particular feature, with the blocking issue and the
date it became blocked written on it. Figure 15 shows a board where a pink
sticker marks a blocked item.

Fig. 14 Blocked Items Diagram Example

Fig. 15 Blocked Item Visualized with Pink Sticker

Step 5: Measure Flow | Priming Kanban 53Priming Kanban | Step 5: Measure Flow52

Try to avoid having a particular place on the board for blocked items. Since
this place is not part of the actual workflow, there is a tendency that people
grow numb to these issues and they end up having their own little cor-
ner where they rarely get attention (before someone turns up yelling and
screaming, wanting to know why it was not finished two months ago). It
also seems to generate a behaviour where people become less interested
in resolving them and more interested in stating that some external party is
currently responsible for getting it solved. This might be true, but it still re-
presents a problem that you have invested time and resources in something
that is not moving and has not yet generated a single dollar of revenue. It is,
however, just my personal opinion. You should choose the strategy that fits
your own context.

Four diagrams, next to the board, is often the limit as to how much informa-
tion most people are able to process before they simply “drown” in it and
start to care less. It is much better to use one metric actively than having
four you rarely pay attention to. In any case, it is important that metrics are
posted visibly, and keeping them hidden on a separate sheet in an electronic
system will rarely get much attention. Figure 16 shows the four diagrams,
covered in this chapter, on top of the board.

Fig. 16 Flow Metrics Visualized on top of Board

Step 6: Prioritize | Priming Kanban 55Priming Kanban54

Step 6
Prioritize

It may come as a surprise to someone that we are down to step number
6 before starting to deal with pulling things in the right order. The reason,
however, is quite clear. In his book “Kanban”, David Anderson states that if
you don’t have a working software delivery system, which is able to deliver
reliably and with quality, your prioritization matters little. In this case, you
should probably spend your time fixing the problem of not being able to
deliver first. This is of course context-dependent and in Greenfield projects,
you might want to consider this earlier on. In any case, there is no reason to
stop your current way of prioritizing work, so keep doing that and consider
using the following strategies when you are ready to use a more Lean way of
approaching prioritization.

So, how do we prioritise our work the best way possible? In step 7, we will
look at how different types of work should be handled differently, but for
now, we will stick to the prioritization of one type of work, e.g. “user stor-
ies”.

Cost of Delay (COD)
The default principle is Cost of Delay (COD), and Don Reinertsen again is by
large responsible for introducing this principle to IT. COD describes the reve-
nue or expected cost saving lost by choosing NOT to work on a given item.
Your highest priority should be the item with the highest COD. In reality, the
COD will often be weighted by Cost of Implementation (COI), deadlines, time
and other factors. It is out of scope for this book to explain the full concept
of COD. For now, all you need to do is wrap your head around the concept
of lost opportunities and that every time you choose to work on something,
you are choosing to block something else. Calculating the exact COD is
almost never possible in IT, so we will often have to do with our current best
guess based on the available data. A good guess, however, is much better
than no guess at all and learning to place economic value on your work is a
maturing exercise for all projects and organizations.

Step 6: Prioritize | Priming Kanban 57Priming Kanban| Step 6: Prioritize56

Visualizing Priority
To make sure that we pick the right item to work on, our input queue should
always be prioritised and new work pulled from the top. This rule applies no
matter whether you are working with Scrum, planning a batch of work for
the next sprint, or with the flow-based approach continuously pulling the
highest priority when a work permit exists. Figure 17 shows an example.

Other important prioritization factors, which should also be included in the
final rank, include:

• Risk and uncertainty. Buy information early for high-risk and high-
 impact decisions

• Bare necessities: Project infrastructure, etc.

• Balance size: Mix story size to keep a steady flow.

• Balance story types: Mix functional/non-functional stories to ensure
 a steady flow of value.

• Dependencies: Handle dependencies proactively so that work does
 not get stuck.

If you are working with a traditional backlog or a waterfall-like requirement
specification containing 50+ items, people naturally start to question how
much of it to visualize on the board. There is no general rule; some teams
find it helpful visualizing the entire input queue, while others keep the list in
a separate place/tool and gradually pull the e.g. 5 most important items on
the board. I like to use an iceberg as a metaphor for describing this policy.
Only the top of the iceberg is visible above the water, but if you remove it
(pull the items into your system), ice from underneath will emerge to form a
new top. Keeping an explicit WIP limit on the input queue is, however, a very
good idea to keep it from spinning out of control. I usually compare a back-
log to an unused top floor of a house. If you put everything up there that
you are reluctant to throw out, you have very little chance of finding the few
things you actually need when you need them. Therefore, keep the backlog
clean and make sure it is not growing out of control.

Fig. 17 Prioritization Policies Visualized on the Board

Step 7: Identify Classes of Service | Priming Kanban 59Priming Kanban58

Step 7
Identify Classes

of Service

Not everyone is created equal and the same goes for the way we deal with
different types of work in software development. Few would question that
an issue resulting in 10,000 users being unable to access the system and co-
sting $100,000 in revenue per hour deserves special treatment, compared to
a feature under development. But how do we make sure that we choose the
most reasonable way of processing these different types of work?

In a Kanban system, the way of doing it is referred to as “Classes of Service”,
which simply mean that we will treat things differently according to their
specific characteristics.

So how do we approach establishing classes of service?

Types of work
Different types of work exist in all software delivery systems and identifying
these is often a good starting point. Individual work types will differ from
system to system, but almost all have some element of requirement, e.g.
User Stores or Use Cases and defects/bugs. These may again be divided into
categories of functional and non-functional user stories, as well as blocking,
critical and cosmetic bugs.

Typical types of work include:

• User Stories (Small, Medium, Large)

• Bugs (Cosmetic, Critical, Blocker)

• Manual Reports

• Textual Edits

• Support Tasks

• Installation

Step 7: Identify Classes of Service | Priming Kanban 61Priming Kanban | Step 7: Identify Classes of Service60

Define Classes of Service
Once you have defined your different work types, the next step is to consi-
der how you will handle these different work types in your system. Each way
of handling work types is a Class of Service. The best way to explain this is by
showing an example. In the following, we have defined 4 classes of service.

Standard Class
• Extra cost: 0

• Work types: Cosmetic Bugs, User stories

• Special treatment: None

Priority Class
• Extra cost: $500

• Work Types: Critical bugs, High priority user stories.

• Special treatment: Takes priority at each stage.

Fixed Deadline Class
• Extra cost: $ 0-2000

• Work Types: User Stories

• Special treatment: Takes priority at each stage if deadline is deemed
 unsafe. Otherwise, it is treated as a standard class. Emergency de
 ployed if necessary.

Expedite Class
• Extra cost: $3000-5000

• Work Types: Blocker Bug

• Special treatment: Break WIP limits, stop existing WIP, emergency
 deploy

Special treatment defines how this class differs from a standard work item
when introduced into our software delivery system. There is always a cost
associated with giving things special treatment. By measuring flow, you
should be able to make a qualified guess. What is the effect of giving so-
mething specific treatment? How much longer will it take for the rest of the
items to get through (given you can estimate cost of delay)? How much time/
extra time will be used in total, due to task switching, and will you have to
spend extra time deploying, etc.? Initially, it will, however, always be a best
guess on the average cost and some teams choose to collect a few weeks of
data first. It is, however, an extremely powerful tool and to some people, it
is a huge surprise to discover that expediting is not free. This will naturally
cause everybody to evaluate whether it is worth doing it. Once you start to
measure your flow, you will be able to make more informed guesses about
the cost of special treatment. You can see the effect expedites have on the
cycle time diagram as well as how an emergency deploy blocks flow and
consumes resources.

Often, it is a good idea to set a fixed limit on the number of non-standard
classes in our system. A good rule to consider is: “If everything is an expedite
you have got no expedites at all”.

Visualizing Classes of Service
Classes of Service can be visualized in a number of different ways. Two of the
most popular ways of displaying it is either using color codes (figure 18) or
swim lanes, as shown in figure 19 (or a combination of both).

Step 7: Identify Classes of Service | Priming Kanban 63Priming Kanban | Step 7: Identify Classes of Service62

Fig. 18 Classes of Service Visualized Using Color Coding Fig. 19 Classes of Service Visualized Using Swim Lanes

Priming Kanban 65Priming Kanban | Step 7: Identify Classes of Service64

Using classes of service gives you the opportunity to handle each item in a
rational way, according to its economic impact, instead of resolving to panic
and fire fighting. It also means we can make different promises to our custo-
mers, depending on the class of service we are handling. This is a topic we
will cover in more detail in step 9.

Step 8
Manage Flow

Step 8: Manage Flow | Priming Kanban 67Priming Kanban | Step 8: Manage Flow66

By now, you are already showing signs of operating in a highly mature Agile
environment. You have visualized your entire workflow, limited WIP, set up
QA policies and have started tracking your flow. The next thing is to learn to
read your system and to take appropriate action when you see an improve-
ment opportunity.

Decision filters
In general, I find it useful to use David Anderson’s Agile and Lean decision
filters to guide our actions.

Agile Decision filter

• Are we making progress with imperfect information?

• Are we encouraging a high trust culture?

• Are we treating WIP as a liability rather than an asset?

Lean Decision filter

• Value trumps flow

• Flow trumps waste elimination

• Eliminate waste to improve efficiency

While the first two points in the Agile decision filter are of a more broad
character, the rest can be used to make better and more informed decisions
when dealing with challenges and difficult decisions.

 What the Lean decision filter simply states is that value is more important
than flow, so be careful when trading value for a better cycle time. This is
actually a common problem in Agile projects where business value (and
sometimes also quality) is often sacrificed to get more things done.

 In one of the worst cases I have seen, 3 teams working on the same pro-
duct had been forced to work overtime for the last 3 months. When I asked

them “why”, the only answer I would get from team members, product
owners and the program manager was that they had to complete a long
list of features and correct a number of bugs. When I asked what business
goal they were trying to reach, most would just stare at me. When I finally
convinced them that they had to agree with the customer on a shared goal/
vision for the release, instead of just working blindly on a long list, I felt we
were getting somewhere. After 1 week of hard work and negotiation, the
team of product owners and the program manager presented the vision
to the teams. Most were happy but one team member raised his hand and
said “are you aware that we have not got a single item on our board that
will move us one step closer to that vision?”. Though they tried to give him
an answer with a straight face, the embarrassment was showing clearly. The
team probably had at least 10 items in various stages on their board and if
not, a single one of them moved the project closer to the new vision; having
worked overtime for such a long time seemed very much like a waste of time
and resources. This was a valuable lesson; you might have the best Kanban
system in the world and great flow across the entire value chain, but if you
are missing core feedback loops on your value hypothesis, that might just
mean you are producing waste faster.

Flow, on the other hand, is still more important than waste elimination, so
be careful when trading flow for e.g. increased capacity utilization - an issue
we will cover in more detail in the next section.

When you have managed to optimize for value and flow, you are ready to
look at waste elimination; however, make sure you first and foremost watch
the product before the people.

With the Agile and Lean decision filters in mind, let us try to look at some
core concepts for managing flow in our software delivery system.

Optimize flow, not utilization
When you look for improvement opportunities, try to avoid thinking, in
terms of utilization. Look for opportunities to increase the flow of work items
through your system by asking the following questions:

Step 8: Manage Flow | Priming Kanban 69Priming Kanban | Step 8: Manage Flow68

• Are you working with the right WIP limits?

• Can you find a way of making the size of user stories smaller?

• Is there a way to identify features that explode in size, before they
 are introduced into your system and end up blocking capacity for
 long periods of time?

• Can you level out the size of user stories to create a more
 continuous flow?

• Can you train for flexibility to avoid silos and easier relieve
 bottlenecks?

• Have you got adequate buffers in place to handle variation?

• Are you looking at optimizing the whole and not individual stages?

Optimizing flow instead of utilization is close to the very core of Lean. Ame-
rican car manufacturers used to measure and reward individuals according
to how many e.g. car doors they could produce, even if those car doors were
just stock piled in a storage building somewhere. This made the individual
machines work incredibly fast, but slowed down the overall production,
since large storages made it hard to locate parts, move parts around, and
vast amounts of money were tied up in the inventory. The Toyota production
system totally changed the game and showed that by focusing on the end
product and matching the individual machines’ speeds to the ration of cars
coming off the production line (tact time), it gave an economic advantage
that could not be disputed.

The key is to always think in terms of the flow of the end product and try
not to focus on how you can make an individual or an individual step go
faster. Unfortunately, many managers are still much more focused on get-
ting people to work faster than the quality and flow of the product. Always
remember to watch the product, not the people!

I recently discussed the issue with a client, where everybody was extremely
focused on utilization and asked the question: “What do you do to make
sure you are always busy”. One replied “I have an assignment I can always

work on when there is nothing else to do”. I asked him how long he had
been working on it and what the value was. His reply was quite interesting:
“I have been working on it for a year; it hasn’t been released yet so it has not
created any value so far. One of his colleagues ask him when he thought it
would be released: “Well, I have to admit that due to recent changes in our
product portfolio, it will probably end up being killed in a week or two”. The
rest of the group laughed out loud and openly admitted that this was not an
uncommon scenario in the company.

Relieve bottlenecks
The Theory of Constraints (TOC) teaches that there will always be one
bottleneck within a given system, thus limiting production flow. Though
TOC brings a simplified view to flow and bottleneck handling, it helps us to
understand the importance of looking at the system as a whole and to focus
our efforts where they bring most value. Using a visual Kanban pull system,
bottlenecks are easy to identify, as you will see work piling up in upstream
processes and the workflow being drained in downstream processes. The
immediate reaction is often to add more capacity, but often there are other
and more effective ways of handling bottlenecks. People simply do not
scale the same way machines do and the increased capacity, in terms of the
number of people, is often eaten up by the increased coordination overhead
and training. Remember Brooks’ Law: “Adding manpower to a late software
project makes it later.”

Instead, try to look for opportunities to protect the bottleneck from unne-
cessary work. In one project, we found the PO team to be the bottleneck.
When analyzing their work, it became apparent that much of their time was
consumed by bug investigation and getting back to users who had not recei-
ved the necessary education to work in the system. This task could easily be
undertaken by members of the development team and the result became
that developers would rotate the task of doing this.

The longer-term perspective could be to find out how this came to be, and
either improve the workflows in the system to make them more intuitive or
help users to get a better introduction. Removing non-value adding work is
by far the most effective way to relieve a bottleneck.

Step 8: Manage Flow | Priming Kanban 71Priming Kanban | Step 8: Manage Flow70

A third way could be to investigate whether the PO team has blocked work
items consuming capacity. In this case, the team should “swarm” on these
to get them fixed as soon as possible

More ways of dealing with bottlenecks can be found in David J. Anderson’s
book “Kanban”, mentioned at the beginning of this book.

Introduce buffers
If you know that there is a bottleneck in your system, it is also good to intro-
duce an appropriate buffer in front of it to make sure that the bottleneck is
rarely drained. If, for example, your bottleneck is “Development”, a buffer
stage with items “Ready for Development” could be added. Choosing the
right size takes some experience. It is ok for the buffer to be emptied once in
a while, but if it happens every 2 weeks, you should probably choose a larger
one or evaluate if this is indeed still a bottleneck (could be upstream since
the buffer was drained continuously).

Release planning
Despite being called “Product Development”, most teams doing actual
software development (all that I have worked on) live under the “Project”
constraints of budget, time and scope. Thinking only in terms of flow is the-
refore often a naive approach, since steering group committees expect you
to be able to answer the questions: Are we on time? Are we on budget? Will
you deliver the agreed scope?

To be able to handle this situation in a sensible way, you need to do two
things:

Firstly, you need to agree that since you cannot fix all three, scope will
remain flexible. Moving a deadline is hard and often results in a vast amount
of time spent reorganising, coordinating and communicating. Increasing
the budget often means adding more people and as previously mentioned,
this is seldom a good tool to reach an upcoming deadline. Adding more-
people is a strategic move for the long-term perspective. When increasing

the budget, it does not mean more people; it means making the people you
have got work longer hours. It can be a tool if you have only got one week to
go, but in all other situations, you should refer to the previous statement by
Kent Beck that “if you have got a problem that cannot be fixed by working
overtime for a week, you have a problem that cannot be fixed by working
overtime anyway”. Too often, overtime is used as the project manager’s
desperate tool to show that “I am doing something”. He knows it will not fix
the problem but uses it to show some kind of action. In some rare cases, mo-
ving the deadline is the right solution, but for the reasons mentioned above,
keeping a flexible scope is a good rule of thumb.

Secondly, you need to understand a flexible scope. When people hear the
term “flexible scope”, they often interpret it as a laissez-faire approach
to software development, which really means “do whatever”. However,
working with flexible scope requires discipline as well as the ability to track
progress accurately to ensure that you are making informed decisions in a
constantly changing environment. This is a key factor in getting the best pos-
sible ROI.

You know that your original estimates, in terms of complexity, cost, and busi-
ness value, were made at the point in time when you had the least amount
of information available. Still, deadlines and budget were based on these
assumptions and it is therefore essential to track your progress to make sure
that the project is still feasible. There are many ways of doing it, but since we
have our CFD in place, why not use it for this purpose as well? Most project
budgets are done by release, so let us look at an example of that (doing it,
for multiple releases, only requires minor adjustments). By having a budget,
deadline and initial scope in place, we simply draw our expected velocity on
the CFD and track our progress according to that.

Remember that most projects follow a S-Curve and that deviations, as a ge-
neral rule, indicate that you now have more information available than you
did before and therefore are able to make more informed decisions (could
be to kill the project early).

Step 9: Establish Service Level Agreements (SLA) | Priming Kanban 73Priming Kanban | Step 8: Manage Flow72

Figure 20 shows an example of a S-Curve on top of a CFD. As you can see, the
backlog was expected to increase by around 40 percent (from experience),
from 28 to 40 points, but at one point had grown to more than double the
size (57). While starting out with a higher than expected velocity, velocity
dropped half way through the release (in this case because of quality pro-
blems).

Experiment
Managing flow also means trying to continuously improve it (covered in
more detail in step 10). Many projects do this blindfolded in the sense that
they have no means of telling whether the things they changed were a suc-
cess or failure.

Unfortunately, most Agile projects fall into this category. Retrospectives
are used to set up experiments, but following up (if done at all) only inclu-
des whether it was carried through or not. There will of course always be a

Fig. 21 Relieve Bottlenecks to Improve Flow

Fig. 20 Release Plans Visualized on the Cumulative Flow Diagram

high level of uncertainty, but more often than you think, the simple metrics
introduced in this book provide a clear visual indication of whether it worked
or not. As you might recall, the Deming circle includes Plan, Do, Check, Act,
because it is necessary for us to be able to make informed decisions moving
forward.

For example, if you decide to include testers in the development team to
do more upfront testing. You should expect to see a drop in defect rates
within a reasonable timeframe and be able to work with a lower WIP limit
for “Test”.

Managing flow is all about reading your software system to make the best
possible decisions with the information available in the pursuit of the highest
ROI.

Step 9: Establish Service Level Agreements (SLA) | Priming Kanban 75Priming Kanban74

You are now well on your way towards establishing a more effective and re-
liable system for software delivery, so now it is time to show your results to
the outside world. Having a stable pull system in place and using a simple set
of metrics, to track the system’s performance, will make it possible for you
to establish SLAs that you actually meet. This will help you keep the system
in place and avoid the traditional revert to fire fighting and chaos once the
Kanban initiative is no longer new and shining. So how does this work?

Establishing the right Service Level
Agreements
While traditional Agile approaches, like Scrum, put high value on predictabi-
lity in terms of Sprint commitment, a Kanban system works on the belief that
you will gain predictability by having a software delivery system that works
in a predictable way. There is a subtle difference between these two ways
of approaching predictability, which should not be underestimated. One is
based on a plan-driven approach, while the other is flow-based.

 If you treat your different classes of service the same way every time and
measure the consequence of your improvement efforts, chances are that
cycle time, quality and cost will only improve over time. This gives you the
possibility of sharing this data with your customers. The previously mentio-
ned classes of service might therefore get an SLA looking something like this:

Standard Class
• SLA:
 o Mean: 15 days
 o 90 percent within: 21 days
 o All within: 30 days

Expedite Class
• SLA:
 o Mean: 2 days
 o 90 percent within: 3 days
 o All within: 4 days

Step 9
Establish Service

Level Agreements
(SLA)

Step 9: Establish Service Level Agreements (SLA) | Priming Kanban 77Priming Kanban| Step 9: Establish Service Level Agreements (SLA)76
Fig. 22 Classes of Service Policies Posted Next to the Board

Fixed Deadline Class
• SLA:
 o 98 percent within deadline

Priority Class
• SLA:
 o Mean: 8 days
 o 90 percent within: 13 days
 o All within: 18 days

The key here is that we know these numbers, not because of qualified gues-
ses but because we have been tracking our system’s performance and have
collected the necessary data. If a demand arises for us to provide even more
detailed information, we can easily adjust our metrics accordingly. If, for
example, it turns out that our standard class work items differ a great deal in
size, we might want to add the following details to show our customers the
direct effect.

Standard Class
• SLA 200-300 story points (Large):
 o Mean: 21 days
 o 90 percent within: 25 days
 o All within: 30 days

• SLA 100-200 story points (Medium):
 o Mean: 13 days
 o 90 percent within: 18 days
 o All within: 25 days

• SLA 10-100 story points (Small):
 o Mean: 10 days
 o 90 percent within: 14 days
 o All within: 18 days

For many customers, this information is highly valuable in terms of prioritiza-
tion and in experiencing that these numbers hold true, this gives an amount
of trust and collaboration far beyond what most have experienced in prior
projects. Also, this will show the direct benefit of breaking work down into
smaller sizes, both in terms of risk, cost and cycle time. To make sure every-
body is aware of the current SLAs and Classes of Service, most teams find it
useful to post them next to the board, as shown in figure 22.

Step 10: Focus on Continuous Improvement | Priming Kanban 79Priming Kanban78

Step 10
Focus on

Continuous
Improvement

Keeping a constant cycle of improvement going is arguably the hardest and
most important element when implementing Kanban. As previously men-
tioned, Kanban is a method for driving evolutionary change, and the good
news is that having gone through the previous steps will make this process of
continuous improvement a lot easier.

The extreme amount of information radiation created through the visuali-
zation of workflow, explicit policies and SLAs for each class of service has
proved to foster an ongoing dialogue about improvement opportunities far
beyond those seen in traditional software projects. Every day you are forced
to make explicit decisions about how best to handle work in your system.
While being a good base for continuous improvement, this fact also seems
to provoke a deeper understanding of Agile and Lean concepts for those
working in a Kanban system and is therefore less likely to revert to former
processes and anti patterns.

Since we collect real data, Kanban also gives us the opportunity to perform
and validate our experiments in a more scientific way than traditional Agile
projects. Initiatives to improve cycle time should result in an actual measu-
rable effect. This makes continuous improvement in a Kanban system much
more reliable and since we can see and measure the effect of our change
initiatives, we are much more likely to keep raising the bar.

For some people, working with Kanban is the first time they start to see
the software delivery system as a whole. This gives an immense insight into
other people’s work, how they depend on you, and vice versa. This also
means that opportunities for optimizing more than just individual silos arise
from the ongoing discussions between the involved groups of people. If you
happen to see a tester, PO and a developer discussing flow improvements
next to the Kanban board, you can be certain that you are well under way.

While spontaneous quality circles (the Lean term for these ongoing discussi-
ons) are excellent vehicles for continuous improvement, many Kanban teams
still benefit from the use of a regular cadence of retrospectives (kaizen
events in Lean terminology). Retrospectives give the team a chance to gain
perspective and see their work from a distance. This sometimes leads to
suggestions for larger structural changes beyond Kaizen, which is known as
Kaikaku (dramatic change) in Lean. A combination of ongoing quality circles,
daily standup meetings and a cadence of retrospectives seem to be a power-
ful cocktail to drive improvement.

Step 10: Focus on Continuous Improvement | Priming Kanban 81Priming Kanban80

As I mentioned earlier, a key factor in achieving this is to stick to the rule
“Change your policies; do not break them”. If people do not act according to
team policies, chances are that your system will degrade over time and you
will never see the true value of visualizing work.

I often get the question “Will Kanban not serve as an excuse to revert to
former dysfunctional practices when there are no rules or practices making
sure you stick to a more Lean and Agile way of working?” Though I under-
stand where the question is coming from, I do not share this concern. My
experience is that Kanban is a unique way of catalyzing Agile and Lean prin-
ciples, even in situations where it seemed impossible to do so. The few cases
where I have seen it fail were either because senior management did nothing
to support the initiative or, in some cases, even worked against it or where
no effort was put into explaining why visualizing work, flow and feedback are
important aspects. To succeed and drive continuous improvement, Kanban
needs commitment from management, and people, using the principles
in their daily work, need to understand WHY it makes sense. When these
aspects are present, there is no reason to expect the initiative to fail or that
people will use the system to bypass former change initiatives and revert to
old dysfunctional practices.

Good luck on
your journey

Priming Kanban 83Priming Kanban82

I hope that these past chapters have given you useful insights and have in-
spired you to move forward on your Agile journey and to use Kanban on real
projects in your company. I would love to get your feedback from reading
this and for you to share stories about how it might have helped you achieve
better ROI for you and your customers.

All suggestions for a possible second edition are very welcome. You can find
me here:

Jesper Boeg

 Mail: jbo@trifork.com
 Twitter: J_Boeg
 Blog: http://triforkagile.blogspot.com/

Trifork Agile Excellence

 Mail: triforkagile@trifork.com
 Twitter: triforkagile
 Website: www.trifork.com

If you think your company could benefit from Kanban training or coaching,
we would be more than happy to discuss it with you. Trifork has a broad
range of Agile offerings, including coaching, onsite training and certificati-
ons in Kanban, Scrum, Lean, Personal effectiveness and Agile development
practices.

If you do get started with Kanban, I will encourage you to join the Kanban
yahoo groups “kanbandev” and “kanbanops” as well as participate in discus-
sions and knowledge sharing about applying Kanban in practice. Since this
only serves as a short intro, I would also suggest that you broaden your
knowledge through training and reading the following books:

• Kanban, David J. Anderson, 2010

• The Principles of Product Development Flow: Second Generation
Lean Product Development, Donald G. Reinertsen, 2009

• The Elegant Solution: Toyota’s Formula for Mastering Innovation,
Matthew May, 2008

• Lean Thinking: Banish Waste and Create Wealth in Your
 Corporation, James P. Womack and Daniel T. Jones, 2003

• The Toyota Way: 14 Management Principles from the World’s
 Greatest Manufacturer, Jeffrey Liker, 2004

• The Lean Startup: How Constant Innovation Creates Radically Suc-
cessful Businesses
 Eric Ries, 2011

Best of luck on your journey and please consider making us part of it.

ENTERPRISE SOFTWARE
DEVELOPMENT SERIES

